A 3:1 mixed aggregate of diphenylamidolithium with lithium chloride: crystal structure of $[(Ph_2NLi)_3LiCl\cdot3tmen]$ (tmen = N,N,N',N'-tetramethylethylenediamine)

William Clegg,^a Andrew J. Edwards,^a Francis S. Mair*^b and Philip M. Nolan^c

^a Department of Chemistry, University of Newcastle, Newcastle upon Tyne, UK NE1 7RU

^b Department of Chemistry, UMIST, PO Box 88, Manchester, UK M60 1QD

^c Department of Chemistry, University of Dublin, Trinity College, Dublin 2, Republic of Ireland

Demonstrating a new structural type in mixed aggregate chemistry, a 3:1 mixture of Ph₂NLi and LiCl with 3 equiv. of N,N,N',N'-tetramethylethylenediamine exists in toluene and in the solid state as a Ph₂NLi/LiCl mixed 'dimer' and a (Ph₂NLi)₂ homodimer linked only by a Li–Cl coordinate bond, as determined by NMR spectroscopy and X-ray crystallography.

There has been growing interest in the effect of added salts in a wide variety of chemical reactons, focused by a recent treatise on the subject.1 One of the most intensely investigated phenomena has been the effect of added lithium halides on reactions involving lithium amides.² Mixed aggregates have been implicated by NMR³ and, more recently, by crystallographic,⁴ and *ab initio* computational^{4d,f,5} analysis. So far for mixtures of lithium amides and lithium halides, of particular importance in modern enolisation reaction methodology, there have been examples of 1:1 {the 5,10-dihydrophenazine derivative⁴*a* [LiCl·Li(NC₁₂H₈NH)·4thf] and the 2,2,6,6-tetramethylpiperidine (tmp) derivative⁴*d* [LiBr·Li(tmp)·3thf]} and 2:1 $\{e.g. [LiCl \cdot 2LDA \cdot 2tmen] and isostructural anal$ ogues^{4b,c,d,f} aggregates. For 3:1 amide/halide aggregates there is no prior evidence; the only structurally characterised 3:1 mixed aggregate has been the organolithium heterocubane [LiBr·3LiPh·3thf], a structure in which the halide occupies one corner of the cube,⁶ in retrospect unsurprising in view of the homo-aggregates $[LiBr \cdot Et_2O]_4$ and isostructural [Li-Ph·Et₂O]₄.^{7,6} While halides and carbanions are often associated with the ring stacking motif, inclusion of amides in the aggregates precludes this structural type.8 Halides have previousl been incorporated into ladder structures,⁴ including a very recent tetralithium butterfly cluster with μ_4 bromide, ⁴*e* but we here report an alternative way for two dimers to associate via a single contact.

We chose the diphenylamido system as the basis for an extensive study of mixed aggregation phenomena since it is a simple model secondary amide amenable to crystallographic study. Prior to our work, only a single structure involving Ph₂NLi had been reported, that of a monomeric 12-crown-4 complex.⁹ However, a thorough NMR spectroscopic investigation of the Ph₂NLi/LiBr system was also in the literature. This revealed evidence only of mixed dimeric aggregates.^{3a} As this manuscript was in preparation, a further structure report appeared involving Ph₂NLi in a large aggregate with BuⁿLi and dilithiated Ph₂NH.¹⁰

Crystals of $[(Ph_2NLi)_3LiCl\cdot3tmen 1$ were grown from a toluene solution prepared from Ph_2NH , Ph_2NH_2Cl and Bu^nLi in the presence of tmen.⁺ This hydrohalide *in situ* route has proved advantageous over 'direct' or 'ammonium salt' routes in the past for generation of crystalline mixed aggregates.^{4b,df} Structure determination by X-ray crystallography⁺ revealed the elegantly simple structure depicted in Fig. 1. Perhaps the simplest way of rationalising the molecule is to consider it as an adduct of a homodimeric amidolithium and a 1:1 mixed dimer.

Taken in this way the mixed dimer may be compared with [LiCl·Li(NC₁₂H₈NH)·4thf] in which each lithium is fourcoordinate,^{4a} as in 1, but in which the chloride was only twocoordinate. In 1 the chloride is μ_3 , as it is in [LiCl·2LDAP·2tmen],^{4b} but in a Y-shaped rather than a T-shaped conformation. This near-planar (sum of angles 356°) Y-shape is rare for chloride. The closest analogy structurally lies in [(LiCl)₄(pmdeta)₃] (pmdeta = *N*,*N*,*N*'',*N*'''-pentamethyldiethylenetriamine),¹¹ where the sum of angles around the three-coordinate chloride is 337°. This structure also provides the closest analogy to the two linked rhomboids of 1. However, in [(LiCl)₄(pmdeta)₃] the link is supported by a bridging pmdeta ligand.¹¹

A more intriguing view of the molecule might be as a frozen analogue of a postulated intermediate in the fluxion of [LiCl·2LDA·2tmen] in toluene solution.⁴*f* In this way, inclusion of a further amidolithium unit converts this fluxion intermediate, in which chloride acts as a fulcrum around which the other ligands rotate, into a stable geometry. The retention of the double-ring structure of **1** in solution is proven by the concentration-invariant observation of three signals in a 2:1:1 ratio in the ⁷Li NMR spectrum in toluene. This view of an extra amidolithium unit trapping an opened 2:1 aggregate is also relevant to enolisation mechanisms of 2:1 LDA/LiCl ag-

Fig. 1 Molecular structure of compound 1. Selected bond lengths (Å) and angles (°): Cl(1)–Li(2) 2.242(6), Cl(1)–Li(3) 2.377(7), Cl(1)–Li(4) 2.378(7), Li(1)–N(4) 2.140(7), Li(1)–N(1) 2.151(8), Li(1)–N(3) 2.169(7), Li(1)–N(2) 2.220(7), Li(2)–N(4) 2.004(9), Li(2)–N(1) 2.106(8), Li(3)–N(9) 2.068(8), Li(3)–N(5) 2.130(8), Li(3)–N(6) 2.168(9), Li(4)–N(9) 2.088(7), Li(4)–N(8) 2.135(9), Li(4)–N(7) 2.165(8), Li(2)–Cl(1)–Li(3) 135.9(3), Li(2)–Cl(1)–Li(4) 144.0(3), Li(3)–Cl(1)–Ll(4) 75.8(2), N(4)–Li(1)–N(1) 98.1(3), N(4)–Li(2)–N(1) 107.5(3), N(4)–Li(2)–Cl(1) 127.5(4), N(1)–Li(2)–Cl(1) 124.9(4), N(9)–Li(3)–Cl(1) 97.7(3), N(9)–Li(4)–Cl(1) 97.1(3), Li(2)–N(1)–Li(1) 76.9(3), Li(2)–N(4)–Li(1) 77.4(3), Li(2)–N(9)–Li(4) 89.3(3).

Scheme 1

gregates in solution: it has been proposed that such aggregates react *via* scission of a Li–N bond and coordination of a ketone.^{4d} This proposal is further supported by the similarities between the putative opened intermediate and the stable geometry of **1** as shown emboldened in Scheme 1.

Another interesting view of the molecule is as a 'crystallographic snapshot' of the process of amidolithium ladder fragmentation by solvation, as recently discussed by Mulvey and coworkers.¹² By variation of solvent ratio and organic substituent on amido nitrogen, a series of fragmented ladders have been structurally determined, most recently by use of the primary amide PhNHLi and limited amounts of thf.¹² Inclusion of chloride in the aggregate **1** reduces the connectivity of two dimers to its minimal limit.

The success of the Ph_2N anion as a platform for mixed aggregate studies is due in large part to its favour of asymmetric solvation in the dimeric state. One four-coordinate and one three-coordinate lithium are observed in the unmixed tmen complex of this amide, just as in **1**, and in other mixed aggregates that we have structurally characterised. Details of some of these will be found in a forthcoming full paper once their solution behaviour has been fully characterised.¹³

Forbairt (P. M. N., F. S. M.) and the EPSRC (W. C., A. J. E.) are gratefully acknowledged for financial support. We thank Dr J. O'Brien for obtaining NMR spectra.

Footnotes and References

* E-mail: frank.mair@umist.ac.uk

 \dagger Compound 1, mp 151 °C, was obtained as colourless needles in a yield of 51%. A second crop produced a combined yield of 98%. Satisfactory C, H, and N analyses were obtained.

‡ *Crystal data* for 1: C₅₄H₇₈ClLi₄N₉, M = 916.5, monoclinic, space group $P2_1/c$, a = 23.067(3), b = 14.879(2), c = 17.124(2) Å, $\beta = 104.77(2)^\circ$, U = 5682.8(12) Å³, Z = 4, $D_c = 1.071$ g cm⁻³, $\mu = 0.896$ mm⁻¹ (Cu-Kα, $\lambda = 1.54178$ Å), F(000) = 1976, T = 160 K. Stoe-Siemens diffractometer, crystal size $0.57 \times 0.42 \times 0.30$ mm, $\theta_{max} 67.5^\circ$, 9314 reflections measured, 9266 unique ($R_{int} = 0.0772$). Structure solution by direct methods, full-matrix least-squares refinement on F^2 for all data, with anisotropic displacement parameters, riding isotropic H atoms, no absorption correction. Final $R_w = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]^{\frac{1}{2}}\} = 0.2627$ for all data, conventional R = 0.0930 for 6115 data having $F_o^2 > 2\sigma(F_o^2)$, S = 1.032. Final difference map between +0.70 and -0.35 e Å⁻³. Programs: SHELXTL (G. M. Sheldrick, University of Göttingen, Germany), and local programs. CCDC 182/661.

- 1 A. Loupy and B. Tchoubar, Salt Effects in Organic and Organometallic Chemistry, VCH, Weinheim, 1992.
- 2 See, for example: D. Seebach, A. Beck and A. Studer, *Mod. Synth. Methods*, 1995, 7, 1 and references therein.
- (a) J. S. De Pue and D. B. Collum, J. Am. Chem. Soc., 1988, 110, 5518;
 (b) P. L. Hall, J. H. Gilchrist and D. B. Collum, J. Am. Chem. Soc., 1991, 113, 9571;
 (c) P. L. Hall, J. H. Gilchrist, A. T. Harrison, D. J. Fuller and D. B. Collum, J. Am. Chem. Soc., 1991, 113, 9575;
 (d) K. B. Aubrecht and D. B. Collum, J. Org. Chem., 1996, 61, 8674.
- 4 (a) L. M. Engelhardt, G. E. Jacobsen, A. H. White and C. L. Raston, *Inorg. Chem.*, 1991, **30**, 3979; (b) F. S. Mair, W. Clegg and P. A. O'Neil, *J. Am. Chem. Soc.*, 1993, **115**, 3388; (c) Z. Duan, V. G. Young and J. G. Verkade, *Inorg. Chem.*, 1995, **34**, 2179; (d) K. W. Henderson, A. E. Dorigo, Q.-Y. Liu, P. G. Williard, P. v. R. Schleyer and P. Bernstein, *J. Am. Chem. Soc.*, 1996, **118**, 1339; (e) K. W. Henderson, A. E. Dorigo, P. G. Williard and P. R. Bernstein, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 1322; (f) W. Clegg, J. C. Greer, J. M. Hayes, F. S. Mair, P. M. Nolan and P. A. O'Neil, *Inorg. Chim. Acta*, 1997, **258**, 1.
- 5 T. Koizumi, K. Morihashi and O. Kikuchi, Bull. Chem. Soc. Jpn., 1996, 69, 305.
- 6 H. Hope and P. P. Power, J. Am. Chem. Soc., 1983, 105, 5320.
- 7 F. Neumann, F. Hampel and P. v. R. Schleyer, *Inorg. Chem.*, 1995, 34, 6553.
- 8 R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167.
- 9 P. P. Power and X. Xiaojie, J. Chem. Soc., Chem. Commun., 1984, 358.
- 10 R. P. Davies, P. R. Raithby and R. Snaith, Angew. Chem., Int. Ed. Engl., 1997, 36, 1215.
- 11 C. L. Raston, B. W. Skelton, C. R. Whittaker and A. H. White, J. Chem. Soc., Dalton Trans., 1988, 987.
- 12 W. Clegg, L. Horsburgh, F. M. Mackenzie and R. E. Mulvey, J. Chem. Soc., Chem. Commun., 1995, 2011 and references therein.
- 13 W. Clegg, A. J. Edwards, F. S. Mair and P. M. Nolan, unpublished results.

Received in Cambridge, UK, 12th September 1997; 7/06645G